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Abstract. A simple derivation of the Lorentz theorem is presented which gives the perturbation pressure and 
velocity due to the presence of a plane wall introduced into an unlimited viscous fluid of given pressure and 
velocity obeying the Stokes equation. 
An extension to the case of a spherical boundary is made in the same manner, leading to the case of a plane 
boundary as a limit of large radius. The sphere theorem is revised and applied to three elementary solutions by 
Lamb. 

1. Introduction 

In 1896 Lorentz [1] developed a theorem yielding a mirror image of the pressure and velocity 
of the Stokes flow due to a plane wall in a unlimited viscous fluid. In a previous review [2] 
this theorem has been shown to be derived by the use of the general solution in terms of three 
harmonics proposed by Imai [3]. 

As to the case of a spherical boundary, the present author [4] presented a sphere theorem 
for the perturbed stream function of the axisymmetric flow due to a sphere introduced into an 
unlimited viscous flow in axisymmetric motion, obeying the Stokes equation. This theorem 
has been presented by Collins in a more compact form [5]. 

Recently, Paraniappan et al [6,7] have extended this theorem to a general non-axisymmetric 
flow represented by a biharmonic function and a harmonic function, on the basis of an inversion 
theorem for the polyharmonics due to Chwang[8]. This formalism has been applied by their 
group to several internal flows [9] and has ben extended to the case of a spherical interface 
[10]. 

In this paper will be presented a simple procedure giving the reflected pressure and velocity 
due to a plane or spherical boundary [11, 12] directly from the original flow, without recourse 
to auxiliary functions, in a similar way to the original Lorentz formula. 

The sphere theorem is given in an alternative form and is applied to three types of elemen- 
tary solutions given by Lamb [13]. 

2. Plane wall 

2.1. PRELIMINARIES 

Let us derive the image field due to the presence of a plane wall z = 0 in the Cartesian system 
(x, y, z) with the unit vector e normal to the wall. For this purpose, it is convenient to define the 
reflection of any function f (x ,  y, z) by f*(x, y; z) = f(x,  y, - z )  and start from the following 
lemmas for any harmonic function H(x, y, z) and biharmonic function B(x, y, z). 



216 Hidenor i  Has imo to  

L E M M A  1. [1 = - H * & harmomic:  

A [ 1  = 0 

and  satisfies [ t  + H = 0 at  z = O. 

L E M M A  2. L e t / 3  = - [ B  - 2 z B '  + z2AB]  *, 

w h e r e  t h e  p r i m e  ~ deno tes  the z derivat ive  e . grad. 

Then B is b iharmon ic  

~ 2 ~  = o 

and  satisfies [3 + B = 0 as  we l l  as  [3 ~ + B I = 0 a t  z = O. 

(2.1) 

(2.2) 

L E M M A  3. 

A/3  = [4B" - 3 A B  - 2 z A B ' ] *  (2.3) 

2.2. LORENTZ'S THEOREM 

Let  us start f rom the velocity u and the pressure p of  the viscous flow satisfying the continuity 

and the Stokes equation: 

div u = 0 (2.4) 

and 

A u  = g r a d p / #  (2.5) 

o r  

rot to = - grad p l # ,  (2.6) 

where to is the vorticity 

to = rot u. (2.7) 

Then it is easily seen that 

i) p , p  r = e .  g radp ,  e x gradp ,  to and toz = e .  to are all harmonic.  

ii) u, w = u .  e, e x u and zto are all biharmonic,  satisfying (2.2) as well as 

A(e. u) -- i f ~ # ,  (2.8) 

and 

A(z to )  = 2to'. (2.9) 

It should be  noted that these properties are valid also for the perturbed quantifies denoted 
by a tilde ,.~. 

Applying  L e m m a  2 to the biharmonic function w = e • u satisfying ~ + w = 0 and 
( ~  + w) ~ = 0 at z = 0, we have  

,a = -e. q[u,p]*, (2.10) 
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where 

q [ u ,  p] = u - 2zu' + z2gradp/#, 

and we have made use of (2.8). 
The application of Lemma 3 to (2.10) yields 

/5' = #A~b = [4#w" - 3p' - 2zp"]*. 

Integrating (2.12) with respect to z = -z* ,  we have 

= ~ + 2zp' - 4/zw']* = [(2zp - 4#w)' - p]* 

Making use of the relation 

e x gradp/#  = (e.  grad)w - grad (e. to) 

derived from (2,6), we have for the perturbed vorticity to 

= f [ e  x grad/5/# + grad (e • ~b)]dz, 

where the z-component e • ~, in the integrand is found to be 

e • & = - e  • w* 

from Lemma 1 applied to the harmonic function satisfying 

e . & = - e . w  a t z = 0 .  

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Introducing (2.13) and (2.16) in (2.15), we obtain the tangential component 

tot --- w - (e. to)e 

a3t = [o.,t + e x grad (4w - 2zp/#)]* (2.18) 

where we have made use of (2.13). 
The tangential velocity can be obtained by applying Lemma 2 to the biharmonic function 

U:  

U = e x u -  zw (2.19) 

which satisfies the boundary condition 

I J + U = 0  and ( ( J + U ) ' = 0  at z = 0 .  (2.20) 

Making use of (2.8), (2.9) and (2.11), we have 

= - [ e  × q ( u , p )  + zw]* ( 2 . 2 1 )  

which yields by noting ( 2 . 1 9 )  

e x f i  = U + z ~ b  

= - e  x [u - 2zu' + z2gradp/#] * + z(tb + ~*), (2.22) 

where ~b is given by (2.16) and (2.18). 
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Combining (2.10) and (2.22), we have 

fi = - [u  - 2zu ~ + z2gradp/#] * - ze x (ffa + (o*), (2.23) 

Co = - [ w -  2zw'  + zZp'/#] *, (2.24) 

and 

ut  = - [ut + 2z grad tw - z 2 grad d~/#]*, (2.25) 

where we have made use of (2.18) and (2.14). 
The expressons (2.13), (2.24) and (2.25) for/~, ~ and 6t are essentially the formulae given 

by Lorentz. [1] 

3 .  S p h e r i c a l  b o u n d a r y  

3.1. PRELIMINARIES 

It is convenient to rewrite Kelvin's theorem for the harmonics H (x) and Chwang's theorem 
for the bihamonics B (x) in the following form: 

THEOREM 1 (Kelvin's exterior theorem). Let H (x) be the harmonic function of  x = re and 
be regular in the domain r < a. Then 

H(x) = - a H ( x * ) / r  (3.1) 

is regular harmonic in r > a and satisfies the boundary condition 

+ H = O at r = a, (3.2) 

where r is the radius from the center and e is the unit radiul vector. 
Here and hereafter the asterisk * denotes the inversion 

[f(x)]* = f(x*) 

with 

X* ~ a 2 x / r  2 ~ r * e  

and 

r* = a2/r. (3.3) 

THEOREM 2 (Chwang's exterior theorem). Let B (x) be the biharmonicfunction satisfying 

A2B = 0 (3.4) 

and regular in the doman r < a. Then B g&en by 

t3 = - [ ( r / a  + a / r ) B / 2  + a(1 - rZ/aZ)B'  + a3(1 - r2 /a2)2AB/(4r)]  * (3.5) 

is regular biharmonic in r > a and satisfies the following boundary conditions on the sphere 
r = a :  

J B + B = O  a n d ( B + B )  ~ = 0  a t r = a  (3.6) 

where the prime ' denotes the derivative 0 / 0  r = (1/r)(x . grad) = e.  grad. 
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Theorem 2 is a generalization of the sphere theorem for the axisymmetric stream function 
in the Stokes flow derived by the author [4] and Collins [5]. 

We may note the following formula for A/3: 

A;B = - [ ( r B - 4 r 2 B  ' - 4 r 3 B " ) / a  3 + (r/a + 5r3 /a3)AB/2  

- - a ( r 2 / a  2 --  r 4 / a  4 ) ( A B ) / ]  * , (3.7) 

which is easily derived from (3.4) and (3.3) by use of equalities 

A ( f *  /r)  = a4( A f)* / r  5 (3.8) 

and 

A ( r f ' )  = A ( x .  grad)f]  = (x. grad + 2 )Af .  (3.9) 

INTERIOR THEOREMS 1 ~ AND 2 ~ 

In the interior problem where we interchange r > a and r < a in the above Theorems we 
have to restrict H and B to be respectively 0 ( l / r )  and 0(r) as r -4 c~. 

3.2. SPHERE THEOREM 

If we replace z e in the section 2 by x the procedure proceeds analogously to the case of a 
plane boundary. We have 

i) p, rf f  = x .  gradp, x x grad p and x .  w = rw~ are all harmonic. 
ii) u, rut  = x . u, x x u and rZw are all biharmonic, satisfying (3.4) as well as 

A(x .  u) = rp' /# ,  (3.10) 

A(x x u) = 2w + x x gradp/#.  (3.11) 

and 

A(r2w) -- 4rw I + 6w. (3.12) 

It should be noted that these properties are valid also for the perturbed quantities denoted 
by a tilde ,~. 

Applying the theorem 2 to the biharmonic function x • u satisfying x • (fi + u) = 0 and 
x -(fi + u) ~ = 0 at r = a ,  we have 

~r = x .  fi = ( x .  q[u ,p]}* ,  (3.13) 

where 

rq[u,p] = a{(3 - r2/a2)u/2 + (1 - r2/a2)ru ' + a2(1 - r2/a2)2gradp/(4#)} (3.14) 

and we have made use of (3.10). 
The application of (3.10) and (3.7) yields 

/5' = # A ( x .  f i)/r = {tta(4rZur" + 12rulr + 3ur) + a3r(1 -- rZ/aZ)p '' 

+a3(1 -- 7r2/a2)pt/2}*/r 3. (3.15) 
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The perturbed pressure/5 is obtained by the integration of (3.15) with respect to r = 
a 2 / r  * . 

/5 = -{(4r3u'r  + 3 f rur, dr)/a 3 + a(r2/a 2 r4)p t I/(2a) ), 

with 

z = f l 3  - r2/a21rp' d r  = I3 - r2 /a21rp -  3 f l l  - r% lpdr, (3.16) 

where we assume that the integrals are convergent and take the gauge pressure corresponding 
to the lower limit (r =0 or infinity according as outer or inner problem) to be zero. 

Making use of the relation 

x x g r a d p / #  = (rw) I - grad (x.  w) (3.17) 

derived from (2.6), we have for the perturbed vorticity: 

f [ x g r a d f i / #  - grada(x ,  w)*/r]dr, (3.18) rOJ 

since x. oa = rwr is harmonic and satisfy the condition (3.2) of theorem 1 on the sphere r = a. 
We have 

rt~r = x .  t2, = - a ( x .  w)*/r ,  (3.19) 

from theorem 1. 
The tangential velocity ut can be obtained by applying theorem 2 to the biharmonic 

function V 

V = x x u - (r 2 - a2)w/2 (3.20) 

satisfying the boundary conditions of the theorem. We get 

= - { x  x q[u,p] - a(r/a - r3/aa)w/2} *, (3.21) 

where q[u, p] is given by (3.14) and we have made use of (3.11) and (3.12). 
Combining the expression for x x u obtained from (3.20), (3.21) and (3.13), we have 

fi = - { ( 3 r / a  - r3/a3)u/2 + (rE/a 2 - r4a4)au ' + r (a  2 - rE)2gradp/(4#a 3)}* 

r3 / a3 ) { a3 grad t f / ~ * / ( # r 2 ) d  r + e x (rw + grad f x .  wdr)}]*/2 ,  

(3.22) 

where grad t denotes the tangential derivative grad- e (e .grad ). 
Separating the radial and the tangential component we have 

fir = f i . e  = - { ( 3 r / a  - r3/a3)Ur/2 + (r2/a 2 -- r4/a4)aUlr + r ( a  2 - -  r2)2pt/(4#a 3)}* 

(3.23) 

fit = f i  - ~ 2 r e  

= -[ ru t la -  (1 - r21a2)grad t [ ( r2ur  - 3 f rurl2dr)/a 

+a{r (1  - r2/a2)p - 3 f ( 1  - r2/a2)p d r}/(4#)}]]* (3.24) 
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where we have made use of the relation 

x × w = - ( r u ) '  + grad (x. u) (3.25) 

as well as (3.17) to eliminate the vorticity and (3,16) to eliminate p, and assume that the 
constant of integration can be taken to be zero at the lower limit*. 

The expression (3.24) is new and corresponds directly to (2.25) of the previous section. 

3.3. LIMIT FOR LARGE RADIUS 

Let us put 

r = a(1 -I- z l ~  + o(~1~)) (3.26) 

in the several expressions and retain the lowest order in z / a  
For the pressure p, it is convenient to adopt the last exprssion of I in (3.16) and neglect the 

integral in comparison with the first term. We may put u as w, r - derivative as z - derivative 
to the lowest approxination, obtaining (2.10) for p. 

It is easily seen that the radial velocity (3.13) leads to the expression (2.24) for w. In 
the same manner, (2.25) is derived from (3.24) by neglecting integral terms of O(z /a)  in 
comparison with other terms. 

3.4. EXAMPLE 

As an illustrating example, three components of Lamb's general solution [13] are considered. 
For the sake of simplicity we may take a and # to be unity without loss of genarility. 

1) External flow r > 1. 

i) u = rot (xH) = x x grad H = - C ,  

where H and C are solid harmonics of n-th degree (n is a positive integer, since n= 0 is trivial). 
We have also 

p = O and ur = O. 

Introducing these into the corresponding expressions in 3.2, we obtain 

t 5 = 0  and ~ r = 0  so that 6 t = [ r C ] * ,  

i.e. 

~ - -U*/T .  

ii) u = gradH,  

We have 

Ur = n H / r ,  u t = g r a d t  H = T / r  

with 

T = r grad t H  
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as well as 

' n(n 1)H/r 2, u~ (n 1)T/r 2 p = O, u r . . . .  

and 

f rurdr = nrH/ (n  -t- 1) 

Then (3.16), (3,23) and (3.24) give 

/5 = - n ( 4 n  2 -  1)(rH)*/(n + 1), 

fir = -n[{n  + 1 / 2 -  ( n -  1/2)r2}H] * 

and 

fit = -[{1 - n ( 1  - r  2) + 3n(1 - r 2 ) / ( 2 n  + 2)}T]* 

[ { ( n - 2 ) ( 2 n  + 1 ) - n ( 2 n -  1)r2}T]*/(2n + 2). 

iii) p = H ,  

u = [(n + 3)r2grad H -  2nxH]/[(Zn + 2)(2n + 3)]. 

We have 

Ur = nrH/(4n  + 6), ut = (n + 3)rT/[(2n + 2)(2n + 3)], 

f rur = nr3H/[(n + 3)(4n+6)] ,  f ( 1  - r 2 ) p d r  = [r/(n + 1 ) - r 3 / ( n  + 3)]H. 

Introducing these expressions in (3.19), (3.23) and (3.24), we obtain 

= - n ( 2 n -  1)(rH)*/(2n + 2) 

~2r = -n[{2n + 3 - (2n + 1)r2}a]*/(8n + 12) 

and 

fit = [ { ( n -  2 ) -  n(Zn + 1)r2/(Zn + 3)}T]*/(4n + 4). 

2) Interior flow r < 1. 
In this case we have only to take solid harmonics of - ( n  + 1) degree or replace H by 

(rH)* etc. in the exterior problem 

i) u = rot ( x H * / r )  = - x  x gradH*/r = -C*/r ,  

where H and C are solid harmonics of n th degree and we obtain 

/ 5 = 0 , ~ 2 r = 0  so that u = C = - u * / r .  

ii) u = grad (H*/r), p = O. 
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- ( n  + 1)(2n + 1)(2n + 3)H/n, 
- ( n +  1){(n + 1 / 2 ) r -  (n + 3/2)/r}H 

Ur 

and 

fit = - { ( n  + 3)(n + 1 / 2 ) r -  ( n +  1)(n + 3/2)/r}T/n 

iii)p = (rH)*, 

u = - [ ( n - 2 ) r E g r a d  (rH) * -  (2n + 2)x(rH)*]/[2n(2n- 1)] 

we obtain 

= (n + 1)(2n + 3)H/(En) 
= ( n +  1){r 2 -  (2n + 1 ) / ( 2 n -  1)}H/(4r) 

fit = { ( n +  3)r 2 -  (n + 1)(2n + 1 ) / ( 2 n -  1)}T/(4nr) 

It is seen that the case n = 1 in iii) (stokeslet) is formally valid though the convergence 
condition Ci is violated. This fact suggests to apply our formula to the general inner field with 
stokeslet behavior S at infinity after subtraction of S and complementing its perturbation 
later. 

4. Summary 

A simple derivation of the Lorentz theorem is presented which gives the perturbation pressure 
/5 and velocity fi due to the presence of a plane wall introduced into an unlimited viscous fluid 
of given pressure p and velocity u ,  obeying the Stokes equation. 

An extension to the case of a spherical boundary is made in the same manner, leading 
to the case of a plane boundary as a limit of large radius. The theorem is given in the form 
corresponding to the original formula of Lorentz for the plane boundary. 

As an illustrating example three elementary solutions by Lamb [13] were chosen. Applica- 
tion to any case will be easily done, even when the stokeslet behavior violates the convergence 
condition at infinity in the interior problem [9], if the total radial flux is zero. 
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Note 

* We have only to require the condition Ci in the interior problem: Condition Ci 

u~-rp/2----O(1/r 3) as r--+c~. 



224 Hidenori Hasimoto 

References 

1. H.A. Lorentz, A general theorem concerning the motion of a viscous fluid and a few consequences derived 
from it. Zittingsverslag. Akad. Wet. Amsterdam 5 (1896) 168-175; see also Abhand. Theor. Phys. Leipzig: 
Teubner (1907) pp 23-42. 

2. H. Hasimoto and O. Sano, Stokeslet and eddies in creeping flow. Ann. Rev. Fluid Mech. 12 (1980) 335-363. 
3. I. Imal, Some applications of function theory to fluid dynamics, 2nd Int. JSME.Symp., Fluid Machinery and 

Fluidics, (Tokyo) (1972) 15-23. 
4. H. Hasimoto, A sphere theorem on the Stokes equation for axisymmetric viscous flow, J. Phy. Soc. Jpn. 11 

(1956) 793-797. 
5. W.D. Collins, Note on a sphere theorem for the axisymmetric Stokes flow of a viscous fluid. Mathematika 

5 (1958) 118-121. 
6. D. Palaniappan, S. D. Nigam and T. Amaranath and R. Usha, Sphere Theorem for Stokes flow. Mech. Res. 

Comm. 17 (1990) 173-174 
7. D. Palaniappan, S. D. Nigam and T. Amaranath and R. Usha, Lamb's solution of Stokes's equation: A sphere 

theorem. Q. J. Mech. Appl. Math. 45 (1992) 47-56. 
8. A.T. Chwang, On spherical inversions of polyharmonic functions. Q. Appl. Math. 44 (1987) 793-799. 
9. R. Usha and S. D. Nigam, Flow in a spherical cavity due to a stokeslet. FluidDyn. Res. 11 (1993) 75-78. 

10. B.S.  Padmavathi, T. Amaranath and D. Palaniappan, Motion inside a liquid sphere: internal singularities. 
FluidDyn. Res. 15 (1995) 167-176. 

11. H. Hasimoto, Sphere theorem on the Stokes equation for three-dimensional viscous flow. J. Phys. Soc. Jpn. 
61 (1992) 3027-3029. 

12. H. Hasimoto, Addendum to Sphere theorem on the Stokes equation for three-dimensional viscous flow. J. 
Phys. Soc. Jpn. 64 (1995) 3583-3584. 

13. H. Lamb Hydrodynamics, (6th edition) New York: Dover (1945) 738pp. 


